
Fertilité du sol et analyses de sève

30 mai 2022 à Bavois

Alfred Gässler
Ferme de la Justice
60110 Amblainville
+33 3 44 52 14 71
agassler@gassler.fr
www.gassler-techniquesdusol.fr

GÄSSLER Techniques du Sol

GÄSSLER SAS Techniques du Sol

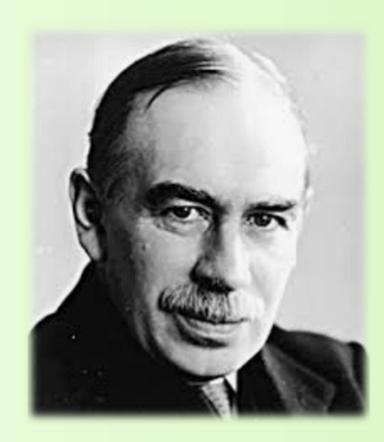
Marie-Thérèse Gässler
Ingénieur agricole
Responsable Formations
et Analyses biologiques

Alfred Gässler

Agriculteur

Consultant

Conseiller


Formateur

« La difficulté n'est pas de comprendre les idées nouvelles, mais d'échapper aux idées anciennes »

John MaynardKeynes

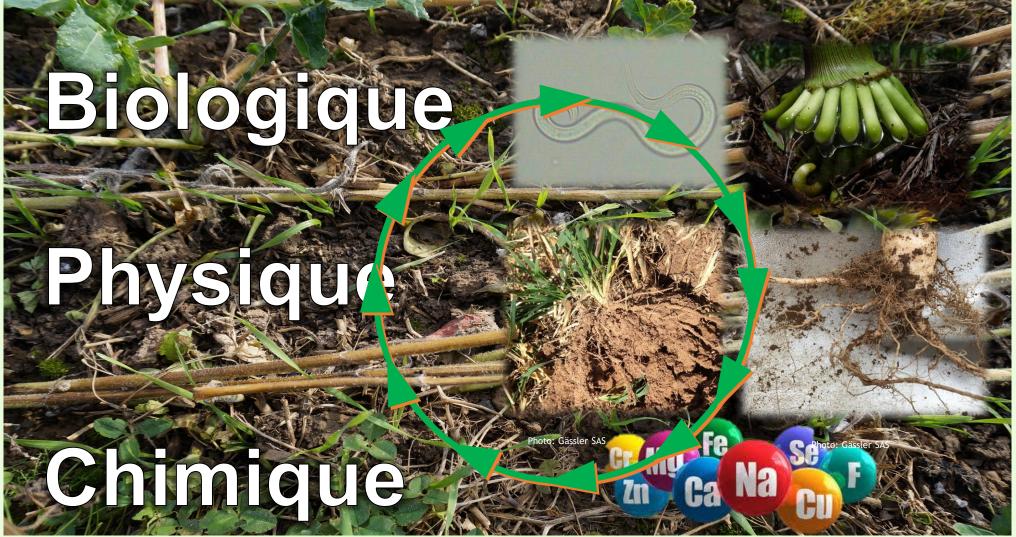
Economiste

Date/Lieu de naissance : 5 juin 1883,

Cambridge, Royaume-Uni

Date de décès : 21 avril 1946, Sussex,

Royaume-Uni



Le sol

La Fertilité du sol

Fertilité du sol

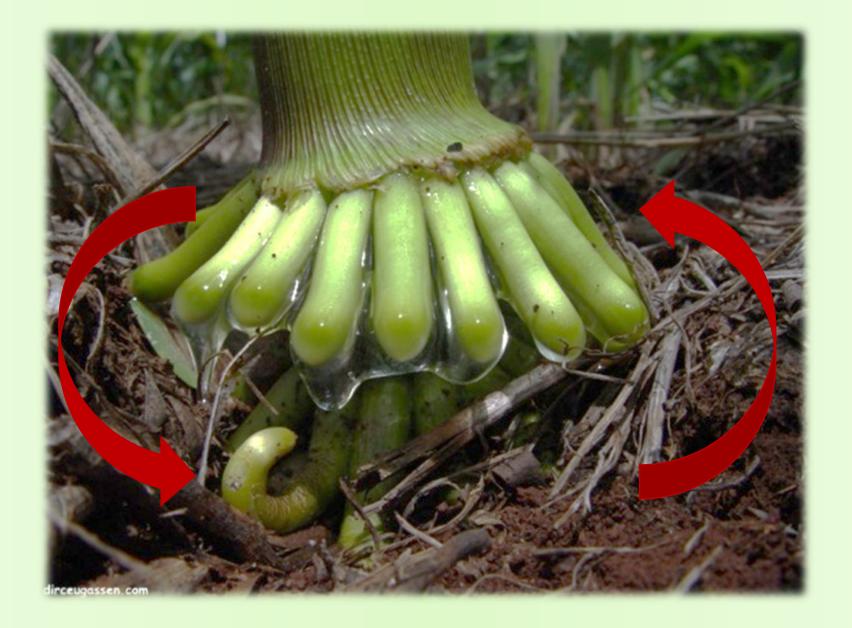
Nutrition minérale des plantes

Est-ce normal que les plantes soient malades?

Est-ce normal que les plantes soient mangées par des insectes?

Ce n'est pas le destin d'une plante de tomber malade si elle n'est pas protégée par un traitement, ce n'est pas quelque chose d'obligatoire. Ce sont des symptômes du fait qu'il y ait un déséquilibre chimique et ou biologique.

(MICHAEL PHILIPPS US)


Malnutrition - Insectes & Maladies

Pommes de terre						
Insectes			Déficience nutri	itive		
Taupin		Ca, P, Co, Vitar	Ca, P, Co, Vitamine C			
Cicadelle		Ca, P, M, Cu, F	Ca, P, M, Cu, Fe			
Altise des pommes de terre			Vitamine C, Ca	, P, Fe, Citamine E,	Cu, Mn	
Luzerne						
Maladie ou problème	Pathologie	Défi	icience nutritive			
		P, C	a, Vitamine C, Fe/	Cu, Se/Co, Vitamine		
Flétrissement bactérien	Bactérie	Α				
Phytophtora : pourriture racinaire	Champignon	P, C	Ca, B, Vitamine C			
F Mais ium	Champignon	P, C	a, Cu, Fe, Mo			
Maladie ou problème		F	Pathologie	Déficience nutritive		
Charbon du maïs		C	Champignon	Ca, P		
Brûlure jaune (autre forme de l	'anthracnose)	C	Champignon	Ca, P, Se		
Anthracnose		C	Champignon	Ca, P, Fe/Cu, Co		

Le sol qui nourrit la plante - la plante qui nourrit le sol

La nutrition des plantes

Le moteur photosynthétique de la plupart des plantes cultivées ne fonctionne qu'avec une efficacité de 15% à 20%. (Charles Tsai, et al.)

Les feuilles des plantes sont comme des Panneaux Solaires.

Si elles sont couvertes, elles n'ont pas un bon rendement.

La nutrition des plantes

Grâce à la photosynthèse, les plantes produisent beaucoup plus d'humus que tous les apports d'engrais ou de compost ne peuvent en fournir. (John Kempf)

Combien d'exsudats sécrétés par 1 ha de maïs / an ?

- 1 ha maïs pas en forme génère seulement → 100 m3/an d'exsudats (Sauerbeck und Johnen 1976)
- 1 ha de maïs bien en forme peut produire → 1000 m3/an d'exsudats (Samtsevich 1968)

Besoins en nutriments de la plante

De l'air

Micro-

nutriments

Carbone C H Hydrogène Oxygène 0 Azote **Phosphore** P **Potassium** K Calcium Ca Magnésium Mg S Soufre B Bore Molybdène Mo Zinc Zn Fer Fe Chlore CI Manganèse Mn Cuivre Cu Silice Si **Aluminium** AI Source: Don Reicosky

Macronutriments

Micronutriments additionnels:

Baryum Ba
Cadmium Cd
Antimoine Sb
Sélénium Se
Cobalt Co
Sodium Na
lode I
Fluorine FI
Chrome CR
Titane Ti

Vanadium V

Éléments traces tels que cadmium (Cd), plomb (Pb) et mercure (Hg) n'ont pas de fonctions biologiques dans les plantes et les SOL animaux

PROGRÈS

Ш	Loc	alisation		GASSLE	R			
	Cult			/RAPES				
		mps / Échantillon		BEAUCH	IAMP / 8			
		No.		B0015				
		.C (M.E.)		14,41				
	Vale	eur Souhaitée Ca : Mg	.%	68 :	12			
		de l'échantillon		7,3				
ŀ		tiére Organique en %		2,2				
	SAT	FURATION DES BAS	ESEN%					
	Cal	cium (60 á 70%) 💎 🚶	.	82,29				
	Ma	gnesium (10 à 20%)	80%	8,96				
		tassium (2 à 5%) dium (.5 à 3%)		4,28 0,33				
	Aut	res Bases (Variable)		4,14				
	HYE	DROGENE ECHANGI	EABLE (10 à 15%)	0,00	RECOMMANDATION	ONS		
li	$\overline{}$				Amendment	kg/ha		
		AZOTE						
		kg/ha	ENR Valeur	72	APPLY NITROGEN AS	S NEED		
	Þ							
	z							
	-	CULEATE C						
	0	SULFATE-S	Valeur Trouvée	14	SULFUR 90-92%	17		
	z	p.p.m.	valedi ilouvee	"	30LF ON 30-32%	"		
	S							
	ç	PHOSPHATES	Valeur Souhaitée	392				
			Olsen Valeur					
		as (P2O5)	Valeur Trouvée	359	DAP 18-46-0	224		
ļ	괵	kg/ha	Déficit/Excès	-33				
		CALCIUM	Valeur Souhaitée	4394	NONE			
		kg/ha	Valeur Trouvée	5316	NONE			
	C	, Kgiilia	Déficit/Excès	+922				
	Þ	MAGNESIUM	Valeur Souhaitée	465				
	٦	kg/ha	Valeur Trouvée	347	KIESERIT 15% Mg	336		
			Déficit/Excès	-118				
	_	POTASSIUM	Valeur Souhaitée	353				
	0	kg/ha	Valeur Trouvée	539	POTASSIUM CHLORI	168		
	z		Déficit/Excès	+186				
	s		Nation 6 1 57					
		SODIUM kg/ha	Valeur Souhaitée	74 25	ROCK SALT	45		
		ryina .	Valeur Trouvée Déficit/Excès	-49	TIOUR SALT	73		
إ			Delloid Endes					
		Bore	p.p.m.	1,45	BORON 14.3%	11		
		Fer Manganèse	p.p.m.	386,40 91,50				
	잍	Cuivre	p.p.m. p.p.m.	2,03	CU SULFATE 23%	6		
۱	OLIOGS	Zinc	p.p.m.	6,75	ZINC SULFATE 36%	6 17		
	S							

Gassler SAS

France

Gassler SAS 8 Place du 8 Mai 60110 Amblainville Location/plot: Cultivation: Crop:

Plant part:

Sample Date:

21-3-2022 Beauchamps

Rapeseed Gassler Canola

¹ Leaf (young)

2 Leaf (old)

Remarks

Name: Address:

Mineral		Current Level	Optimum				
Total Sugars	%	3,6	0,4 - 2,2	1			
Total Sugars	%	2,6	0,4 - 2,2	2			
pH		6,0	6,0 - 6,4	1		<u> </u>	1
pn		6,2	0,0 - 0,4	2			i
EC	mS/cm	11,3	10,3 - 13,5	1			<u>'</u>
	mS/cm	11,8	20,5 25,5	2			1
K - Potassium	ppm	3351	3025 - 4225	1		'	i
	ppm	3561	3023 4223	2			i
Ca - Calcium	ppm	2597	1050 - 2475	1		: 	<u> </u>
	ppm	2822		2			
K / Ca		1,29		1	Ī	<u> </u>	İ
		1,26		2	i	İ	i
Mg - Magnesium	ppm	248	200 - 390	1		<u> </u>	I
	ppm	189		2		j	İ
Na - Sodium	ppm	23	25 - 89	1		1	1
	ppm	30		2		+	İ
NH4 - Ammonium	ppm	458	175 - 410	1		-	-
	ppm	284		2		_	1
NO3 - Nitrate	ppm	175	20 - 480	1		 	1
	ppm	224		2		-	1
N in Nitrate	ppm	39	5 - 108	1 2		+	1
	ppm	50					1
N - Total Nitrogen	ppm	3729	1710 - 2960	1 2		+	
	ppm	1929				—	<u> </u>
CI - Chloride	ppm	338	510 - 1240	1 2			ļ
	ppm	449					<u> </u>
S - Sulfur	ppm	1345	600 - 1010	1 2		!	
	ppm	1088					
P - Phosphorus	ppm	477 258	220 - 450	1 2			-
	ppm			1			<u> </u>
Si - Silica	ppm	9,8 11,5	5,4 - 12,6	2			!
	ppm			1			<u> </u>
Fe - Iron	ppm	1,37 2,40	1,50 - 2,70	2			!
Ma Massassas		5.14	2,00 - 4,80	1			<u> </u>
Mn - Manganese	ppm	5,14 4,02	2,00 - 4,80	2			.
Zn - Zinc	ppm	4,11	1,75 - 3,55	1			<u> </u>
ZH - ZHK	ppm	2,46	4,75 - 5,35	2			i
B - Boron	ppm	2,25	1,00 - 2,20	1			1
o - politili	ppm	2,37	2,00 - 2,20	2			<u>.</u>
Cu - Copper	ppm	0,23	0,25 - 0,45	1		Ī	<u>-</u>
and and the	ppm	0,49	3/80 - 6/10	2			
Mo - Molybdenum	ppm	0,07	0,05 - 0,15	1			 I
morpoundm	ppm	0,36	Sing - Ging	2			
Al - Aluminium	ppm	0,85		1	<u> </u>	<u>.</u> I	I
	ppm	1,74		2	i	i	i

PROGRÈS

	Loca	liration		GASSLE	R	
	Cult	uro		/CORN		
		nps/Echantillon		PAVE/1		
	Labi	•		B0008		
	C.E.0	(M.E.)		12,77		
	Valo	ur Souhaitée Ca : Mq, %		68 :	12	
	1"	o l'échantill a n		6,2		
	Mati	6ro Organiquo on %		2,3	Г	
	SAT	URATION DES BASES	EN %			
		cium (60 à 70%)	l	65,05		
		gnesium (10 à 20%)	ነ _{80%}	12,30		
		assium (2 à 5%)		5,05		
		dium (.5 à 3%)		0,36		
		res Bases (Variable) PROGENE ECHANGEA	BIE (40) 45%)	5,24	DECOMMANDATIO	ue.
	nil	PHOGENE CONMINGER	DEE (10 8 154)	12,00	RECOMMANDATIO	
					Amendment kg	/ha
		AZOTE				
		katha	ENR Valeur	75	APPLY NITROGEN AS N	EEDED
	>					
	z					
	-	SULFATE - S				
	0		Valeur Trouvée	15	SULFUR 90-92%	17
	z	p.p.m.	Talear Froutee	"	00LI ON 00-0E4	
	60					
		PHOSPHATES	Valeur Souhaitée	359		
			Olsen Valeur			
		ar (P205)	Valeur Trouvée	277	DAP 18-46-0	224
		kqfha	Déficit/Excès	-82		
		0.410"."	Union 6 1 57	0000	DELLETED CLASSES	
		CALCIUM	Valeur Souhaitée Valeur Trouvée	3893 3725	PELLETED CA LIME (a)	560
		katha	Valeur I rouvee Déficit/Excès	-168		
			Delicidizaces	-100		
	0	MAGNESIUM	Valeur Souhaitée	412		
	Þ	katha	Valeur Trouvée	423	(b)	
	4		Déficit/Excès	+11		
	-	DOT LOCK III	11-1			
	2	POTASSIUM	Valeur Souhaitée Valeur Trouvée	558 564	DOTA SSILIN CHI ODIDE	168
	-	katha	Valeur I rouvee Déficit/Excès	>64 +6	POTASSIUM CHLORIDE	168
			Dencializates			
		SODIUM	Valeur Souhaitée	66		
		katha	Valeur Trouvée	24	ROCK SALT	34
			Déficit/Excès	-42		
	Ħ	Bore		104	BORON 14.32	42
		Fer Dore	p.p.m. p.p.m.	1,04 599,60	DUNUM 14.34	17
	ايا	Manganèse	p.p.m.	109,17		
	ошова	Cuivre	p.p.m.	3,02		
	ĕ	Zinc	p.p.m.	8,82		
7						
50						
	=					

Plant sap-sample 202203241182 Sample Date: 21-3-2022

60110 Amblainville

Name: Gassler SAS Address: 8 Place du 8 Mai

Cultivation: W Oats
Crop: Oats

Pave

Location/plot:

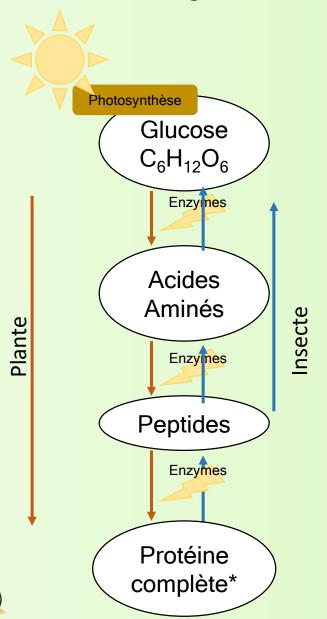
France Plant part: Leaf (young)

Remarks

Mineral		Current Level	Optimum	,		
Total Sugars	%	8,1	0,7 - 3,4			
pH		6,4	6,2 - 6,6			
EC	mS/cm	14,8	13,6 - 17,1			
K - Potassium	ppm	8342	5800 - 7650			
Ca - Calcium	ppm	867	535 - 965			
K / Ca		9,62				
Mg - Magnesium	ppm	237	200 - 400			
Na - Sodium	ppm	68	26 - 178			
NH4 - Ammonium	ppm	553	210 - 625			
NO3 - Nitrate	ppm	<20	< 350		•	
N in Nitrate	ppm	<5	< 79		•	
N - Total Nitrogen	ppm	4279	1870 - 3670			
CI - Chloride	ppm	730	630 - 1700		-	
S - Sulfur	ppm	514	280 - 580			
P - Phosphorus	ppm	658	280 - 520			
Si - Silica	ppm	58,0	38,6 - 67,4			
Fe - Iron	ppm	4,52	2,45 - 5,05			
Mn - Manganese	ppm	20,98	2,60 - 6,90			
Zn - Zinc	ppm	2,85	1,55 - 3,10			
B - Boron	ppm	2,91	0,60 - 1,70			
Cu - Copper	ppm	0,61	0,50 - 0,95			
Mo - Molybdenum	ppm	0,36	0,10 - 0,35			• i
Al - Aluminium	ppm	1,76				

Convertir N

Nutriments > enzymes > métabolisme



Les enzymes \rightarrow permettre aux plantes d'accélérer la digestion, aide a la dissolution des engrais.

De la photosynthèse à la protéine

- Plus la photosynthèse est efficace plus il y aura de glucose
- Besoins des oligoéléments dans les réactions pour la création des protéines complètes
- Plus la transformation est efficace, moins il y a de sucres simples moins il y a aura de risques de maladies
- Les insectes ne possèdent pas tous l'ensemble des enzymes nécessaire à la dégradation des produits complexes → la plante ne sera alors pas source d'alimentation

Magnésium cation - moyennement mobile 250 - 430 ppm / culture blé

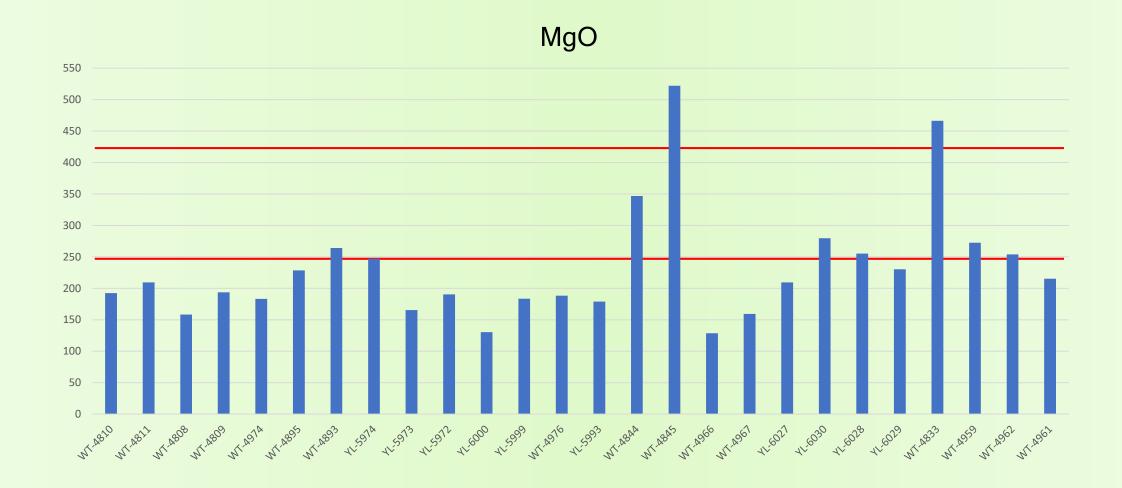
Mg - Magnesium	ppm	547	250 - 430	1		
ivig iviaginesiaiii		347	250 450	2		
	ppm	490		_	ı	

Action +

Conversion efficace du NO3 Croissance saine Important dans la production de chlorophylle

Action -

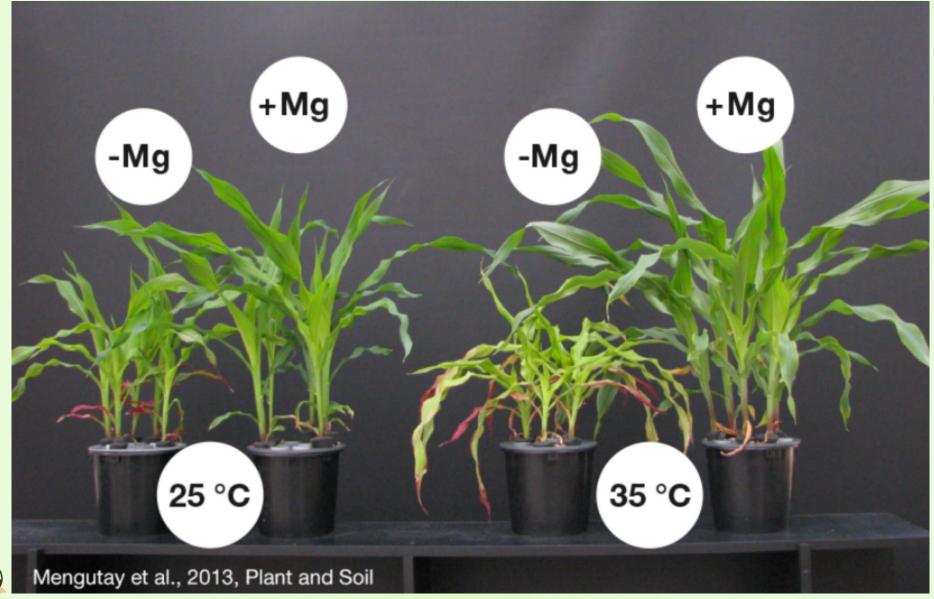
Beaucoup de Mg résulte en une plus faible quantité de K et Ca absorbée


Autres

Diminué si K ou Ca en excès

Magnésium - cation moyennement mobile 250 - 430 ppm / blé

Le Magnésium (Mg)


- Composant essentiel de la chlorophylle
- Activement impliqué dans la photosynthèse
- Co-facteur enzymatique
- Aide dans le métabolisme du phosphate
- Mg est un cofacteur essentiel pour la conversion de d'azotes en formes plus stables d'acide aminé, peptides et protéines
- Active différents systèmes enzymatiques
- ➤ Trop d'azote dans la plants → on peut appliquer du Mg et cela va réduire la concentration en azote de la plante.
- > Avec un niveau en dessous de 10 % de la CEC du sol, toutes les cultures souffrent
 - → Très mauvaise absorption d'azote

Teneur de Mg et stress thermique

Soufre - Anion immobile 360 - 590 ppm / culture blé

S - Sulfur	ppm	928	360 - 590	1		•
o oana.	• •	1066		2		
	ppm	1066				1

Action +

Conversion efficace du NO3 Croissance saine Important dans la production des protéines

Action -

Conditions acides dans le sol, le pH chute et excès d'absorption de Mn, jusqu'à atteindre des concentrations toxiques

Soufre - anion immobile 360 - 590 ppm / blé

Fer - Anion immobile 2,60 - 4,95 ppm / culture blé

Action +

Essentiel à l'assemblage de la chlorophylle Couleur verte de la feuille, sans tâches, évite des plantes jaunâtres

Action -

Un taux élevé de Fe résulte en une faible absorption de Mn et Zn

Fer - Anion immobile 2,60 - 4,95 ppm / blé

Bore Cation immobile 0,40 - 1,20 ppm / culture blé

Action +

Améliore absorption et mobilité du Ca

Stimule l'absorption de Ca

Assure une attache ferme du fruit à la vigne, limite le jaunissement des calices

Améliore la fructification

Action -

Toxiques pour les plantes, décoloration de la pointe de la première feuille, suivie d'une sénescence de la plante

Bore Cation immobile 0,40 - 1,20 ppm / culture blé

23 sur 26 ne se sont pas correctement alimentés

Fer

Anion immobile 2,60 - 4,95 ppm / culture blé

Action +

Essentiel à l'assemblage de la chlorophylle Couleur verte de la feuille, sans tâches, évite des plantes jaunâtres

Action -

Un taux élevé de Fe résulte en une faible absorption de Mn et Zn

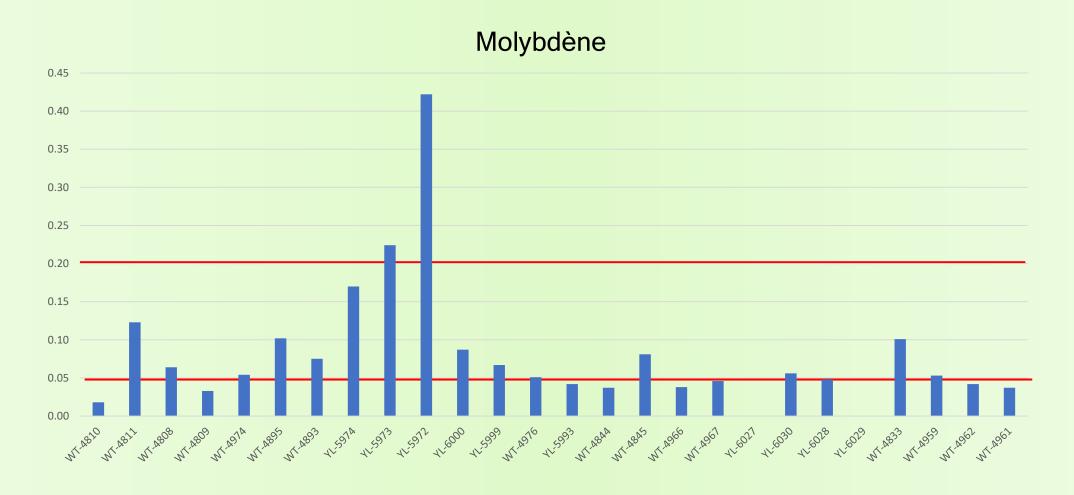
Fer - Anion immobile 2,60 - 4,95 ppm / culture blé

8 sur 26 ne se sont pas correctement alimentés

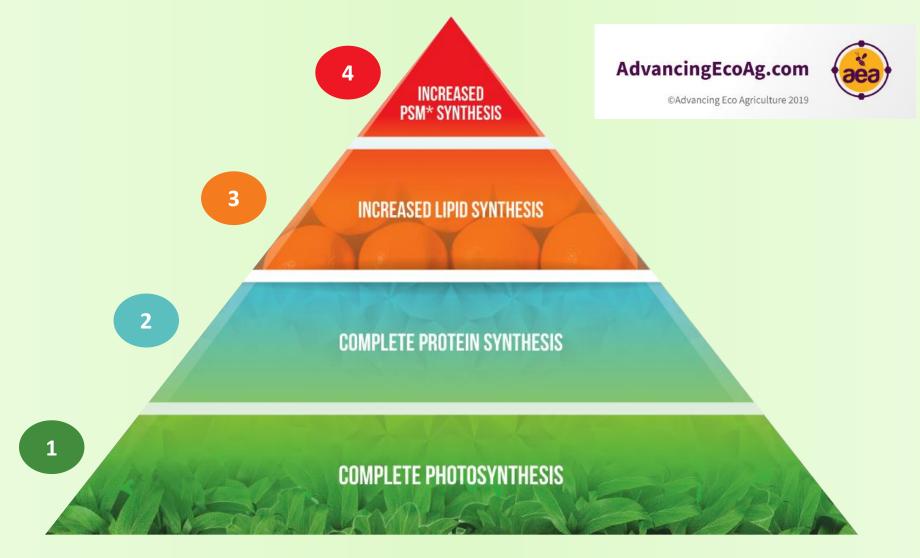
Molybdène Cation immobile 0,05 - 0,20 ppm / culture blé

Action +

Conversion des nitrates en acides aminés, protéines et peptides


Action -

Peut-être toxique si les concentrations sont trop élevées


Molybdène - Cation immobile 0,05 - 0,20 ppm / culture blé

12 sur 26 ne se sont pas correctement alimentés

4 étapes: photosynthèse, synthèse de protéine, synthèse élevée de lipides, synthèse élevée de PSM

Photosynthèse complète

Les plantes commencent à métaboliser rapidement les glucides qu'elles peuvent produire toutes les 24h (par photosynthèse) : transformer les sucres simples en sucres plus complexes et sophistiqués

Stade plus facile à atteindre : fonction directe de la nutrition = changement dans la chimie de la plante

Bonne nutrition ⇔Photosynthèse efficace

Niveau 1 : Photosynthèse accomplie / totale

Le taux de photosynthèse augmente → 150 % à 600%

Les glucides sont majoritairement sous forme complexe

→ Résistance face aux champignons du sol (Verticilium, Fusarium, Rhizoctonia, Pythium, Phytophtora et autres)

Besoins: taux suffisants en Mg, Fe, Mn, N, P

(P: pas directement impliqué dans la photosynthèse mais dans le métabolisme des photosynthétats)

Rhizoctonia

Racines de chaux- fleures endommages par Rhizoctonia

Rhizoctonia Solani sur carotte

Rhizoctone brun de la betterave

Rhizoctone brun de la pomme de terre

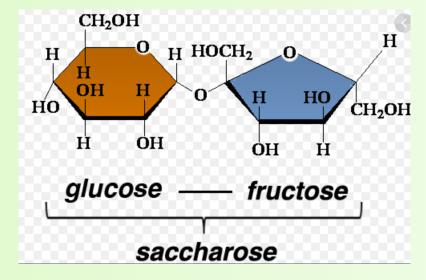
Les maladies causées par *Rhizoctonia* peuvent affecter les plantes à divers stades phénologiques. Le genre *Rhizoctonia* est présent dans tous les types de sol. La souche qui s'attaque aux <u>crucifères</u> préfère les sols frais et humides.

Verticillium

Verticillium sur colza

Verticillium sur pomme de terre

Verticillium sur tournesol


- Champignons du sol signalés dans de nombreux pays des zones tempérées et subtropicales.
- Plusieurs espèces de *Verticillium* sont susceptibles de s'attaquer aux légumes occasionnant des symptômes comparables.
- Très polyphages, ils affectent des gammes d'hôtes plus ou moins larges en fonction des espèces.
- Légumes connus affectés : aubergine en particulier, tomate, poivron, pomme de terre, artichaut, laitue, choux, fraisier, rosier, aster, chrysanthème, tabac, coton, diverses adventices (morelle noire, amarante)

Transformation des sucres - ravageurs

Différentes formes de sucres dans la plante

- Sucres simples et réducteurs : glucose, fructose
- Sucres complexes : saccharose

Objectif pour une plante en bonne santé : transformation des glucoses et fructoses produits par la photosynthèse en saccharose pour stockage

En 24h: transformer 100% des produits issus de la photosynthèse

→ Avoir un brix élevé mais une concentration en sucres réducteurs très faible

Les sucres réducteurs sont détectés par les insectes et autres pathogènes

→ Rend la plante plus susceptible aux attaques

Equilibre - sucres - ravageurs

Des taux élevés de fructose et glucose sont un problème lorsqu'ils ne peuvent être transformés en saccharose → lorsqu'ils y a d'autres facteurs de stress

Exemple du Manganèse :

- Le Mn est nécessaire pour l'enzyme (saccharose phosphate synthase) qui converti le glucose et le fructose en saccharose pour le stockage
- Si carence en Mn → concentration élevée en sucres réducteurs → Augmente attirance des insectes

Les sucres réducteurs qui ne peuvent être stockés sont libérés par les systèmes racinaires : ce sont ces exsudats qui attirent pythuim, phytophtora, aphanomycètes et autres pathogènes racinaires

- → Carence → conversion impossible → pathogènes aériens et racinaires
- → Lorsque les plantes commencent à être équilibrées en terme d'éléments nutritifs, les problèmes diminuent

Synthèse complète des protéines

Stade plus facile à atteindre : fonction directe de la nutrition = changement dans la chimie de la plante

Bonne nutrition ⇔Photosynthèse efficace

Niveau 2 : Synthèse totale des protéines

Le même processus à lieu pour l'azote : les niveaux de nitrate, d'ammoniaque et d'acides aminés diminuent très rapidement dans la sève : ils sont rapidement transformés en protéines ==> taux élevés de protéines et faibles taux d'acides aminés à chaque cycle de 24h

→ Résistance aux insectes au système digestif simple, notamment les larves et les insectes suceurs.

Besoins: quantités suffisantes de Mg, S, Mo, B

(B n'est pas directement impliqué dans la synthèse des protéines mais apporte une résistance aux insectes pathogènes supplémentaire)

Augmentation synthèse des lipides

Stade plus difficile à atteindre : indispensable d'avoir un processus digestif microbien dans le sol vigoureux = changement dans la biologie

Bonne biologie ⇔Fournie éléments nutritifs sous forme de métabolites microbiens ⇔ Stockage de lipides

Niveau 3 : Synthèse des lipides augmentée

Absorption des éléments nutritifs sous forme de métabolites microbiens qui sont très efficaces énergétiquement

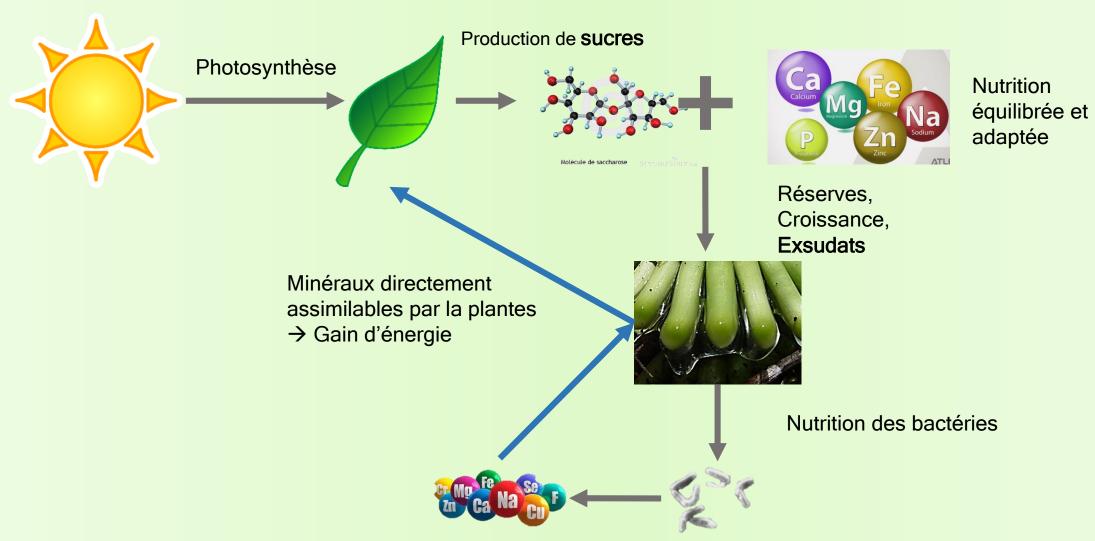
- → Stockage du surplus d'énergie sous forme de lipides
- → Cires et huiles sur les feuilles = Barrière de protection contre les enzymes pectolytiques
- → Meilleure résistance aux pathogènes aériens bactériens et fongiques → Rouille, mildiou...

Besoins: microbiome végétal très dynamique et agressif dans la rhizosphère

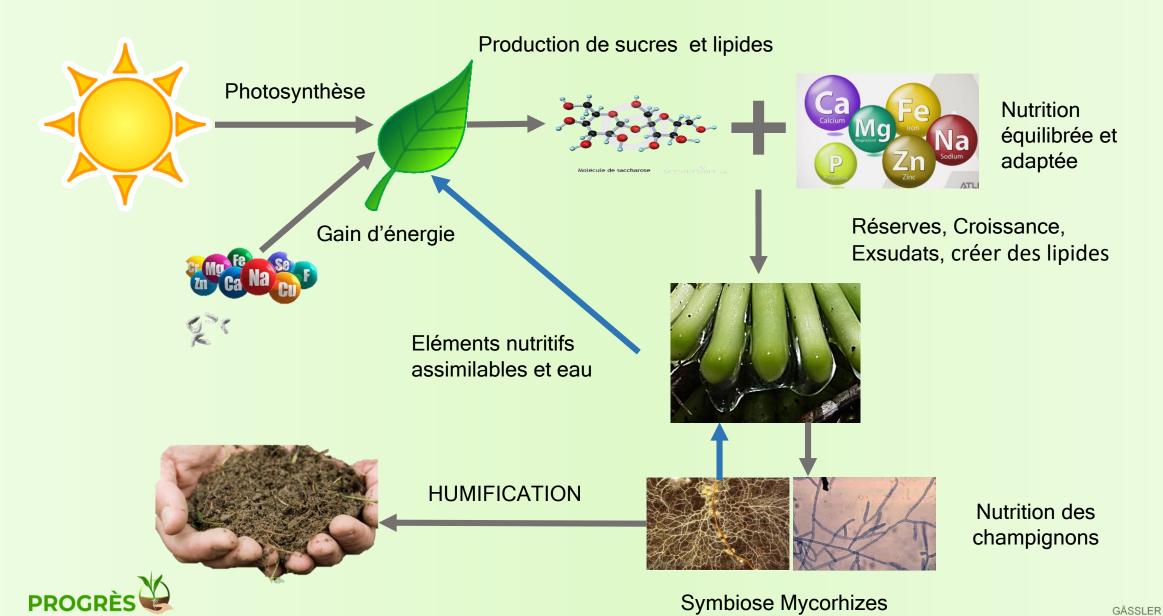
⇔ Bonne biologie, active et efficace

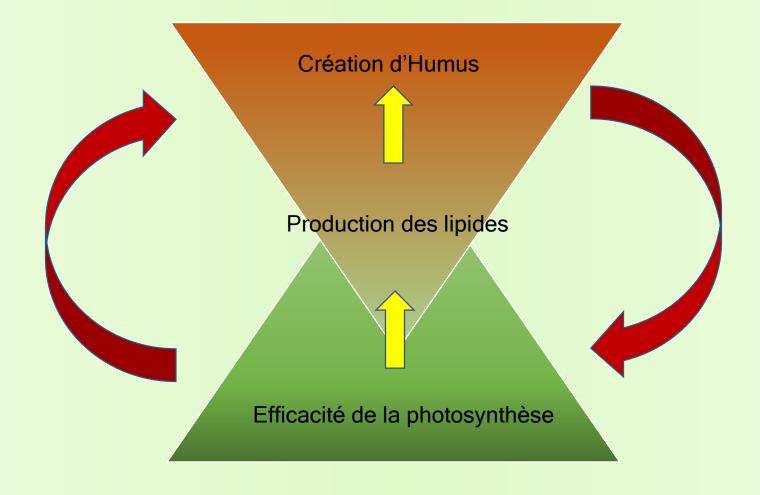
Stade plus difficile à atteindre : indispensable d'avoir un processus digestif microbien dans le sol vigoureux = changement dans la biologie

Bonne biologie ⇔Fournie éléments nutritifs sous forme de métabolites microbiens ⇔ Stockage de lipides


Niveau 4 : Synthèse augmentée des métabolites secondaires de la plante Microorganismes dans rhizosphère et phyllosphère enclenchent les réponses immunitaires -> Concentration supérieure en composants immunitaires et métabolites secondaires de la plante

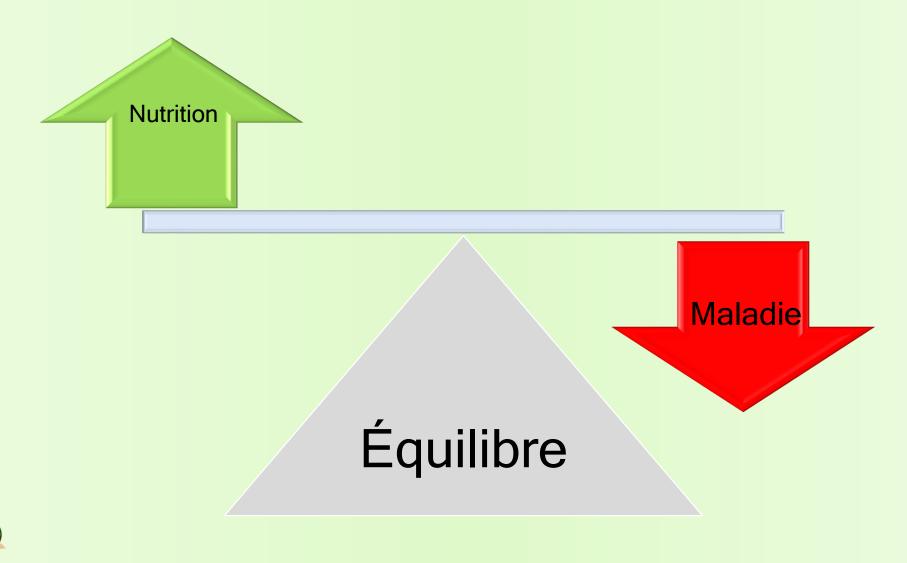
- → Plus de résistance face aux rayonnements ultraviolets, surpâturage, aux insectes avec un système digestif beaucoup plus complexe tels que les coléoptères.
- → Besoins: les bons microorganismes dans le microbiome végétal pour déclencher la réponse immunitaire
- → (PSM → métabolisme secondaires des plants; PSM -> protection, système immunitaire fonctionnel)


Nutrition adaptée 1/2 - Nutrition des bactéries



Nutrition adaptée 2/2 - Nutrition des champignons

La photosynthèse et l'humus



Équilibre de la nature -> la nutrition contre la maladie

Les plantes malsaines créent un sol malsain

Des plantes saines créent un sol sain

- □Les plantes apportent le carbone, les sucres, l'énergie
- ☐ Qui sert de source de carburant et de substrat pour développer des populations microbiennes
- ☐ Qui construisent de la matière organique et minéralisent les nutriments et les rendent disponibles aux plantes
- ☐ Les substances humiques et le complexe argilo humique sont le résultat de l'apport des plantes à l'écosystème

